A simple criterion for controlling selection bias
نویسندگان
چکیده
Controlling selection bias, a statistical error caused by preferential sampling of data, is a fundamental problem in machine learning and statistical inference. This paper presents a simple criterion for controlling selection bias in the odds ratio, a widely used measure for association between variables, that connects the nature of selection bias with the graph modeling the selection mechanism. If the graph contains certain paths, we show that the odds ratio cannot be expressed using data with selection bias. Otherwise, we show that a d-separability test can determine whether the odds ratio can be recovered, and when the answer is affirmative, output an unbiased estimand of the odds ratio. The criterion can be test in linear time and enhances the power of the estimand.
منابع مشابه
General Formula of Bias-corrected Aic in Generalized Linear Models
The present paper considers a bias correction of Akaike’s information criterion (AIC) for selecting variables in the generalized linear model (GLM). When the sample size is not so large, the AIC has a non-negligible bias that will negatively affect variable selection. In the present study, we obtain a simple expression for a bias-corrected AIC (corrected AIC, or CAIC) in GLMs. A numerical study...
متن کامل2 All - Bias Query
I describe a querying criterion that attempts to minimize the error of a learner by minimizing its estimated squared bias. I describe experiments with locally-weighted regression on two simple problems , and observe that this \bias-only" approach outperforms the more common \variance-only" exploration approach, even in the presence of noise.
متن کاملTesting Ecological Theory Using the Information-theoretic Approach: Examples and Cautionary Results
Ecologists are increasingly applying model selection to their data analyses, primarily to compare regression models. Model selection can also be used to compare mechanistic models derived from ecological theory, thereby providing a formal framework for testing the theory. The Akaike Information Criterion (AIC) is the most commonly adopted criterion used to compare models; however, its performan...
متن کاملConfounding Equivalence in Causal Inference
The paper provides a simple test for deciding, from a given causal diagram, whether two sets of variables have the same bias-reducing potential under adjustment. The test requires that one of the following two conditions holds: either (1) both sets are admissible (i.e. satisfy the back-door criterion) or (2) the Markov boundaries surrounding the treatment variable are identical in both sets. We...
متن کاملA new non-parametric approach for suppliers selection
In this paper we propose a simple non-parametric model for multiple crite-ria supplier selection problem. The proposed model does not generate a zeroweight for a certain criterion and ranks the suppliers without solving the modeln times (one linear programming (LP) for each supplier) and therefore allowsthe manager to get faster results. The methodology is illustrated using anexample.
متن کامل